
A grading of disbelief (or surprise) expressed by negative ranking 
function, ! : (scale from 0 to ∞)1

 !(#) = 0 : # is not disbelieved (not surprising)  (1)

 !(#) > 0 : # is disbelieved (surprising) (2)

 !(#) = ∞ : # is considered impossible (3)                              

 !(#) = 0 or !(#̅) = 0 : [the law of negation]  (4)                     

A grading of belief expressed by positive ranking function, '	: 
(scale from 0 to ∞)1

' # = 	!(#̅) : Belief in # equals disbelief in not-#  (5) 

Integrating positive and negative ranks into a two-sided 
ranking function ) expresses belief and disbelief at once: 
(scale from - ∞ to ∞)1

) #  = ' # − 	! # = ! #̅ − ! #  (6)

Metrics of Belief and Disbelief

• A normative model that quantifies degrees of belief and 
disbelief using natural numbers and infinity, providing a 
framework for representing human belief systems1.

   Study Objective:
• To investigate the empirical adequacy of ranking theory in 

measuring belief and disbelief across various contexts and 
scenarios (E1:E5), particularly in comparison to a traditional 
probabilistic model and decision-making framework.

What is “Ranking Theory”?

Probability-Rank Translation
Probability	to	negative	ranking	function2:
! # = log!= > − log!max"∈$ =(B),		E ∈ 0, 1 	 (7)

Probability	to	two-sided	ranking	function2:
) # 	= log! %	'( )

( ) ,	E ∈ 0, 1 	 (8)

1. Spohn, W. (2009). A survey of ranking theory. In Degrees of belief (pp. 185-228). Dordrecht: Springer Netherlands.
2. Raidl, E., & Skovgaard-Olsen, N. (2017). Bridging ranking theory and the stability theory of belief. Journal of Philosophical Logic, 46(6), 577-609.
3. Ellsberg, D. (1961). The crude analysis of strategy choices. The American Economic Review, 51(2), 472-478.
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å

E4 Methods – Dynamic Learning Environment

å

E1:E3 Methods – Reasoning Under Uncertainty
Grade your degrees of disbelief:

(reminder: 0 for not surprising, value greater than 0 for surprising, with infinity for impossible)
Real Estate Investing:

Suppose you buy a property in Toronto, Ontario, today. How surprised would 
you be if the property's value 5 years from today?

 increased        
decreased

remained the same

Time

*did not increase        
*did not decrease

*did not remain the same
(Experiment 3 (E3) Specific Questions:*)

Time

Grade your degrees of disbelief:
(reminder: 0 for not surprising, value greater than 0 for surprising, with infinity for impossible)

How surprised would you be if Kala was hiding in ?
Room A
Room B
Room C    

not Room A
not Room B
not Room C    

å

E5 Methods – Decision Making Task

30: Red Balls

60: Black or Yellow Balls

90: Total Balls

?

Grade your degrees of disbelief:
(reminder: 0 for not surprising, value greater than 0 for surprising, with infinity for 

impossible)

How surprised would you be if the ball you drew was ?
red
black

red or yellow
black or yellow

Please choose one of the gambles for each scenario. 
(repeated x4)

Scenario 1:
     A: Receive $100 if Red, otherwise nothing
     B: Receive $100 if Black, otherwise nothing

Scenario 2:
     C: Receive $100 if Red or Yellow, otherwise nothing
     D: Receive $100 if Black or Yellow, otherwise nothing

Time

The Ellsberg One-Urn Paradox3:

Inaccuracy of Choice-Based Methods in Inferring Belief

Figure 8. No correlation was found between participants' degrees of disbelief expressed through ranking functions and their 
betting choices. This challenges the reliability of choice-based methods in inferring beliefs and highlights the complexity of 
belief formation. Choices with costs and benefits do not reflect underlying beliefs, while ranks of disbelief provide a purer 
measure.

(E5: N = 290)

Degrees of Disbelief More Closely Align with Objective 
Probability Distribution than Subjective Probability

(E4: N = 201)

People Can Grade Degrees of Belief and Disbelief Using 
Ranking Functions, Adhering to the Law of Negation

Contextual Variations in Subjective Disbelief Thresholds

Figure 2. The blue line represents the disbelief threshold (Eq. 2); values below it indicate that the proposition is not 
disbelieved and may represent some degree of belief (Eq. 1). For propositions not disbelieved, participants provided the 
entire range of subjective probabilities from 0 to 1. The purple box highlights varying subjective probability thresholds for 
disbelief, indicating context dependence. This suggests that subjective probability alone may not be sufficient to explain 
degrees of belief and disbelief.

Above the line is disbelieved
Highlights variations in 
subjective probability 
thresholds for disbelief

Correlation Between Two-Sided Ranks and Objective Probabilities

Distinctive Nature of Negative Ranks vs. Subjective Probabilities

Figure 6. A probability simplex (∆n−1) shows participants' subjective probabilities (blue dots) and disbelief rankings (yellow 
dots) against a fixed objective probability [1/3, 1/3, 1/3] in red. The dispersed blue dots illustrate varied subjective 
responses (34.33% agreement), while the clustered yellow dots at the center reflect more consistent evaluations of the 
objective probability (58.21% agreement). Larger dots indicate more common responses, demonstrating that rankings 
provide a clearer view of uncertainty structure than subjective probabilities.

(E4: N = 201)

Figure 5. This violin plot illustrates the relationship between objective probabilities and two-sided ranks across various 
probability distributions. The range extends from negative infinity (representing impossibility) to infinity (representing 
certainty). Negative values indicate disbelief, while positive values signify belief. The medians, marked by triangles, show 
central tendencies within each distribution. A strong positive monotonic relationship was observed (r = 0.77, p < .001), 
indicating that as objective probabilities increase, so do the two-sided ranks.

Ambiguity Aversion Diminishes via Negative Ranks

Figure 7. When participants used negative ranking functions, the proportion showing ambiguity aversion (Ellsberg paradox) 
dropped to 8.6%, compared to 31.4% with betting choices. This indicates that ranking theory offers a less biased and purer 
measure of belief under uncertainty.

Betting Choices Across Four Rounds Negative Ranks

Behavioural Patterns in Ellsberg's One-Urn Scenario(E5: N = 290)

Ambiguity Attraction
Ambiguity Aversion
Neutral Stance
Other: Mixed Choices
Other: Preference for Black
Other: Preference for Red

Figure 1. Participants' numerical ratings of both belief (positive ranks, Eq. 5) and disbelief (negative ranks, Eq. 1-3) regarding 
various temperature ranges, assessed during a questionnaire without known objective probabilities (E1-E3). Both rank types 
consistently aligned with societal and cultural expectations. Notably, most participants adhered to the law of negation (Eq. 4), 
demonstrating logical consistency by not simultaneously disbelieving both a proposition and its negation (e.g., "11 to 20°C" 
and "not 11 to 20°C"). This highlights their capacity to navigate logical constraints in belief assessments.

Figure 3. This plot illustrates the complex relationship between subjective probabilities and negative ranks (disbelief). In 
broader contexts of uncertainty (E1-E3), the mathematical relationship is less evident. The R² value of 0.039 indicates a weak 
correlation, highlighting that negative ranks are not merely logarithmic transformations of probabilities (Eq. 7). Instead, they 
reflect a distinct measure of uncertainty, capturing varying degrees of disbelief that traditional probabilistic models may 
overlook. However, in a probabilistic learning task (E4), where frequencies are observed and tracked based on the number of 
events, the logarithmic function explained 55.4% of the variance. In such scenarios, belief formation is influenced by empirical 
probabilities, though its interpretation fundamentally differs from probabilities.

Two-Sided Ranks Capture the Full Spectrum of Beliefs

Figure 4. Incorporating both positive and negative ranks allowed for a neutral stance and captured the full belief spectrum, 
which traditional probabilistic assessments struggle to achieve. In a probabilistic learning task (E4), a log-odds relationship (Eq. 
8) explained 54.8% of the variance, showing that strong disbelief corresponds with very low probabilities, and strong belief with 
high probabilities. A neutral stance (neither disbelieved nor believed) spanned a wide range of probabilities [0,1]. However, in 
the broader context of reasoning under uncertainty (E3), this log-odds relationship only captured 6.4% of the variance.

Time
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Abstract 
Measuring and quantifying degrees of belief poses a 
fundamental challenge, prompting an exploration into how 
humans navigate uncertainty. This study challenges the 
conventional use of probability theory and investigates ranking 
theory as a viable alternative model. Across the initial three 
experiments (N = 168; N = 63; N = 200), participants 
consistently utilized negative ranking functions to express 
disbelief, revealing a robust pattern across diverse contexts. 
Notably, a logarithmic relationship emerged between 
subjective probability and negative ranks (degree of disbelief), 
highlighting the granularity of ranking functions. Experiment 
3 introduced positive ranks, illustrating a log-odds relationship 
between subjective probability and two-sided ranks (degree of 
disbelief and belief), providing a detailed depiction of the full 
spectrum of beliefs. In Experiment 4 (N = 201), examining 
ranks and subjective probability in a learning task revealed that 
disbelief via negative ranking functions more accurately 
represented the objective probability distribution than 
subjective probability. Lastly, Experiment 5 (N = 291) 
addressed decision-making under uncertainty through the 
Ellsberg paradox, uncovering how ranking theory not only 
resolved contradictions with expected utility theory but also 
eliminated the paradoxical nature of the Ellsberg scenario. This 
study advances our understanding of human uncertainty and 
supports ranking theory as a compelling alternative. 

Keywords: ranking theory; belief representation; reasoning 
under uncertainty; decision-making; Ellsberg paradox. 

Introduction 
How do humans represent beliefs and uncertainties? This 

fundamental question in cognitive science serves as the 

foundation for reasoning, learning, and decision-making. 

Despite its significance, the mechanisms of human 

uncertainty representation remain unclear. Probability theory 

is a widely used framework for representing beliefs, where 

each state of the world is assigned a probability. This model 

guides decision-making processes and actions based on 

established probability laws (Sanborn & Chater, 2016). 

However, there is an ongoing debate about whether this 

approach can fully capture the inherent nature of belief and 

uncertainty (Galavotti, 2017). In the probability theory 

framework, degrees of belief adhere to the laws of 

probability, assumed to be real numbers within the [0,1] 

range. As an agent's degrees of belief in a proposition 

increase, so does their confidence in its truth. 

However, this probabilistic approach may not adequately 

capture the complexities and subtleties of human belief 

systems. One issue to consider is that belief and probability 

are not interchangeable (Spohn, 2013). Although probability 

distributions are useful, they are fundamentally an additive 

measure primarily suited for calculating the expected utility 

of various actions (Smets, 2002). Probabilities are not ideal 

for representing the full spectrum of human beliefs. The 

lottery paradox, as described by Kyburg (1961), highlights 

the difficulties in probabilistic reasoning. Consider a fair 

lottery with one million tickets, of which only one ticket will 

win. Each ticket has a one-in-a-million chance of winning – 

so low that we can be practically certain that any given ticket 

will not win. However, since one ticket is guaranteed to win, 

asserting that every ticket will lose leads to a logical 

inconsistency. This paradox exemplifies a fundamental 

challenge in probabilistic reasoning – probability theory 

often struggles with conjunctive inferences, where the 

additive nature of probabilities can lead to jointly inconsistent 

conclusions (Wedgwood, 2002). Such scenarios reveal how 

combining individual probabilistic assessments, even though 

plausible on their own, can result in an overall belief system 

that is logically contradictory.  

This study introduces ranking theory, developed by 

Wolfgang Spohn in 1983, as an alternative to traditional 

probabilistic models. It provides a normative account of 

belief dynamics and uncertainty representation. It is based on 

formal epistemology and rationality principles (Skovgaard‐

Olsen, 2016; Spohn, 2012-2013). Unlike probability-based 

models, ranking theory does not rely on assigning 

probabilities to events. It utilizes the set of natural numbers 

plus infinity to assign degrees of disbelief or belief to 

propositions, reflecting their logical relations and supporting 

evidence. Ranking theory addresses the lottery paradox by 

using ranks to manage beliefs rather than probabilities. It 

assigns a high-valued rank of disbelief to each ticket based 

on its low individual probability while accommodating the 

conditional belief that if a ticket is chosen, it must be the 

winner. This approach allows for a flexible framework where 

varying degrees of beliefs can coexist without conflict, 

simplifying adjustments compared to probabilistic 

recalculations. These practical implications of ranking theory 

make it a promising tool for understanding and representing 

human beliefs and uncertainties.  

Despite its advantages, ranking theory faces challenges. It 

can be complex to understand and apply due to its substantial 

conceptual shift from traditional probabilistic models. This 

shift requires a deeper understanding of formal logic and 

epistemology. Additionally, ranking theory involves 

managing a broad scale that includes natural number plus 



infinity, which presents unique challenges in both learning 

and practical applications. Furthermore, empirical validation 

is needed to confirm the applicability of this model in human 

belief modelling as it has not been tested in psychological or 

behavioural experiments. Lastly, integrating ranking theory 

with existing probabilistic models poses challenges that must 

be addressed for broader acceptance and application 

(Skovgaard‐Olsen, 2016). 

This study aims to address these challenges by conducting 

a series of behavioural experiments to examine the empirical 

adequacy of ranking theory in diverse scenarios and contexts. 

By exploring the utility of ranking theory as both a normative 

and descriptive model, this study seeks to advance our 

understanding of human belief representation, contributing to 

the development of a model that clarifies the cognitive 

processes and mechanisms involved. 

The basics of ranking theory: a formal explanation 
Ranking theory quantifies a grading of disbelief expressed by 

negative ranking functions (!), representing degrees of 

disbelief about propositions. It utilizes possible world 

semantics, defining propositions within a comprehensive set, 

#. An algebra, $, formed from subsets of #, are referred to 

as propositions (Spohn, 2013).  

Eq. 1: negative ranking function Let $ be an algebra 

over #. Then !, is a negative ranking function for $ iff ! is 

a function from $ into ℝ∗ =	ℝ" ∪ {∞} (the set of non-

negative reals plus infinity) such that for all A, B ∈ $: 
 

!(#) = 0 and !(∅) = ∞ 
 

If !(1) = 0, 1 is not disbelieved (not surprising); if !(1) >
0, 1 is disbelieved (surprising); if !(1) = ∞, 1 is considered 

impossible. 

Eq. 2: law of negation  
 

either !(1) = 0 or !(1̅) = 0 (or both) 
 

The law of negation states !(1) = 0 implies 1 is not 

disbelieved, allowing !(1̅) = 0, where 1̅ is the negation of 

1; in such cases, indifference or suspension of judgement 

regarding 1 is observed. Importantly, it also asserts that !(1) 
and !(1̅)	cannot both be greater than 0, ensuring that one 

cannot simultaneously disbelieve both A and its negation. 

    Eq. 3: law of disjunction  
!(1 ∪ 4) = min{!(1), !(4)} 

 

Eq. 4: positive ranking function 

8(1) = 	!(1̅) 
 

A positive ranking function 8 expresses degrees of belief for 

1, defined by the disbelief in the negation of 1. If 8(1) > 0, 

1 is believed (to some positive degree); if 8(1) = 0, 1 is not 

believed; if 8(1) = 	∞, 1 is believed with absolute certainty. 

Eq. 5: two-sided ranking function Let $ be an algebra 

over #. Then 9	is a two-sided ranking function for $ iff 9 is 

a function from $ into ℝ	 ∪ {−∞,∞}, such that for all 1 ∈
$: 

9(1) = !(1̅) − !(1) = 8(1) − 	!(1) 
 

A two-sided ranking function 9 exists for 1 if and only if 

there is a negative ranking function ! and a positive 

counterpart  8. Thus, if 9(1) > 0, 1 is believed; if 9(1) < 0, 
1 is disbelieved (surprising); and if 9(1) = 0, 1 is neither 

believed nor disbelieved. 

Spohn (2012) suggests that negative ranking functions are 

more suitable for dynamic belief systems than positive or 

two-sided ranking functions due to their simplicity and 

effectiveness. While epistemological studies historically 

focused on intuitive and manageable degrees of belief 

(Cohen, 1997; Dubois & Prade, 2023), positive ranking 

functions are inherently complex, and two-sided ranking 

functions lack a consistent axiomatic framework. Spohn 

proposes negative ranking functions, measuring degrees of 

disbelief, as a clearer and more straightforward method for 

adjusting beliefs considering new evidence, ensuring a robust 

and adaptable methodology within the theoretical framework 

of ranking theory (Spohn, 2012). 

Experiment 1 and 2 
In Experiment 1, we aim to determine whether humans can 

express degrees of disbelief (surprise) in terms of negative 

ranking functions and examine the relationship between 

negative ranks and subjective probability as a preliminary 

step toward applying ranking theory in a psychological 

application. To address these research questions, the first 

experiment had participants grade degrees of disbelief 

towards a set of propositions that they may have pre-existing 

beliefs about the world. Scenarios were given where the 

objective probability of the given scenarios was unclear. This 

was to prevent priming participants to think in terms of 

probability. Experiment 2 was an in-lab replication of 

Experiment 1 (online). 

Participants 
A total of 168 undergraduate students (Experiment 1, online) 

and 63 undergraduate students (Experiment 2, in-lab) from 

the University of Waterloo participated in the study, 

receiving course credits in exchange for their involvement. 

The study did not have any exclusion criteria. In Experiment 

1, the median age was 20 years, with 101 females, 66 males, 

and 1 prefer not to answer. In Experiment 2, conducted 

during a subsequent semester, the median age was 19 years, 

with 48 females, 13 males, and 2 undisclosed. 

Procedure 
Participants assigned numerical values to indicate their 

degrees of disbelief towards various propositions in a 

questionnaire (Eq. 1). These values ranged from zero (not 

surprising) to infinity (impossible), reflecting degrees of 

disbelief/surprise. The questionnaire included diverse topics 

with uncertain probabilities, such as language demographics 

in Quebec, September weather in a specific city, and 

coworkers' music preferences during a hypothetical karaoke 

party. 

Following this, we employed an open sampling format 

with a 10x10 grid, where participants filled grid cells based 



on their disbelief levels from the questionnaire. This method, 

avoiding explicit probability estimations, aimed to capture a 

more intuitive expression of disbelief. Participants adjusted 

the grid to reflect their perceptions, with more cards in a cell 

indicating a more common occurrence. This approach helps 

reduce priming effects, facilitating a clearer expression of 

subjective probabilities (Tiede et al., 2022). 

Our investigation explores the relationship between 

subjective probability and ranking functions, driven by the 

need to understand how changes in one correspond to 

changes in the other. This exploration is crucial for 

understanding the granularity and sensitivity of belief 

adjustments under ranking theory, where beliefs are 

commonly represented as subjective probabilities in existing 

literature. We aim to map subjective probabilities onto a 

ranking framework, considering Spohn’s suggestion 

that negative ranking functions might closely approximate a 

logarithmic function with a very small base, enriching our 

understanding of belief dynamics (Spohn, 2012; Raidl & 

Skovgaard-Olsen, 2017). 

Results 
Our analysis predominantly utilized visual methods to 

illustrate participants' use of negative ranking functions to 

express disbelief, as shown in Figure 1. This consistent 

pattern across different propositions was evident in all three 

questionnaire scenarios. Experiment 2 replicated these 

findings, reinforcing the consistency of the median rank of 4 

observed in both Experiment 1 and 2. For each participant in 

both experiments, we calculated the range of ranks within 

each questionnaire. We then determined the median of these 

rank ranges across all participants and questionnaires. Our 

analysis revealed a median range of 9 in Experiment 1 and 8 

in Experiment 2. These consistent results suggest a stable 

pattern in the rank variation among participants in both 

experiments. Figure 2 revealed a logarithmic relationship 

between subjective probabilities and negative ranks, with a 

logarithmic base between 0 and 1. In instances where 

propositions did not evoke disbelief – implying the possible 

presence of varying belief levels – participants demonstrated 

a broad spectrum of subjective probabilities, from 0 to 1. The 

context-dependent nature of subjective probability thresholds 

for disbelief is particularly emphasized in the purple box in 

Figure 2, illustrating how participants' responses adapt based 

on different scenarios. 

Discussion 
Experiments 1 and 2 demonstrated that participants 

consistently used negative ranking functions to express 

disbelief across various propositions and scenarios. The 

observed logarithmic relationship in Figure 2, which aligns 

with Spohn’s theoretical framework, illustrates the 

granularity that ranking functions offer in mapping disbelief, 

providing a clearer distinction than conventional subjective 

probability assessments. However, the study's exclusive 

focus on negative ranks limits our exploration of the broader 

spectrum of belief, particularly for responses that may not 

inherently suggest disbelief, such as neutral or having degrees 

of belief toward a proposition. Integrating positive ranking 

functions in future studies is crucial to expand our 

understanding of disbelief quantification. A two-sided 

ranking function would not only increase the granularity of 

the belief system but also clarify the significance of a rank of 

0 within the context of subjective probabilities.  

Figure 1: Disbelief in predicted daytime high temperatures 

for Boston in September. Experiments 1 and 2 demonstrate 

consistent medians and ranges of disbelief across different 

temperature propositions.  

Figure 2: Logarithmic relationship between subjective 

probability and negative ranks. The purple region illustrates 

variations in the threshold of subjective probability leading to 

disbelief across questionnaires. Points below the dotted line 

represent unsurprising outcomes, with subjective 

probabilities ranging from 0 to 1. 

 

Experiment 3 
Building on the groundwork laid by Experiments 1 and 2, 

Experiment 3 introduced positive ranks to explore a more 

comprehensive model of belief and disbelief. This adjustment 

aimed to enhance the granularity with which subjective 

probabilities and the two-sided ranking function interrelate, 

reflecting both ends of the belief spectrum. 

 

Participants 
200 undergraduate students from the University of Waterloo 

participated in the online experiment in exchange for a 



course credit. This study has no exclusion criteria (median 

age 19 years; 156 females; 44 males). 

 

Procedure 
The procedure for Experiment 3 mirrored that of 

Experiments 1 and 2, incorporating two additional 

scenarios: "real estate investment" and the "lottery ticket” 

scenarios. Participants were asked to provide positive ranks 

in addition to the negative ranks used in earlier experiments. 
 

Results and Discussion 
The main result of Experiment 3 is presented in Figure 3, 

which shows a log-odds relationship between subjective 

probabilities and two-sided ranks. The inclusion of positive 

ranks in the graph made it easier to see participants' levels 

of belief and disbelief. A two-sided rank of 0 in Figure 3 

indicates a neutral judgment, while values greater than 0 

indicate a belief in the proposition. This approach allowed 

for a more detailed connection between subjective 

probability and two-sided rank.  

The majority of participants showed consistency in 

applying positive ranks, following the laws of negation (Eq. 

2). This confirms the reliability of the method in measuring 

belief degrees. The two-sided ranking approach effectively 

assesses belief and disbelief in assessments, as demonstrated 

by its consistency in both negative and positive ranks. 

Experiment 3 contributes to our understanding of ranking 

theory's application in various contexts and enables us to 

interpret the complete range of subjective beliefs. 

Figure 3: The relationship between subjective probabilities 

and two-sided ranking functions captures the full spectrum 

of participant beliefs. The Y-axis scales from disbelief 

(negative values) to belief (positive values), with zero 

indicating neutrality. 

Experiment 4 
Experiment 4 builds on Experiments 1-3, where objective 

probabilities were unknown, by investigating ranking theory 

in a learning setting. In this experiment, participants first get 

acquainted with a computer opponent's hide-and-seek 

strategy, then provide ranks and subjective probability 

assessments. The experiment manipulates probability 

distributions to study their effects on disbelief and belief 

levels, and their associations with subjective and objective 

probabilities.  

 

Participants 
268 undergraduate students from the University of Waterloo 

participated in the experiment for course credit, with options 

for online or in-lab participation. After excluding 67 

participants for not adhering to instructions, 201 were 

included in the final analysis (median age: 20 years; 140 

females, 56 males, 5 undisclosed). 

 

Procedure 
The experiment began with a practice session where 

participants alternated between seeking and hiding against a 

computer opponent, each taking three turns in both roles with 

randomized room assignments. Following this, the main 

experiment involved structured trials alternating between 

seeking and hiding, with each action classified as a 'trial' and 

every 10 trials comprising a 'round.' Participants completed 7 

rounds of each role per game against each opponent, totaling 

140 trials per game (70 seeking and 70 hiding). 

Each opponent was randomly assigned to one of the 

probability distributions for room selection ([100, 0, 0], [70, 

30, 0], [80, 15, 5], [33.3, 33.3, 33.3]) that they followed for 

both hiding and seeking, to ensure predictability amidst the 

overall strategic complexity. During the seeking phase, 

participants were guided via a dialogue box to find the 

opponent hiding in one of the rooms, with outcomes indicated 

by green (success) or red (failure) notifications (i.e., ‘you 

found [child]!’ in green). Similarly, during the hiding phase, 

participants chose a room to hide in, with the feedback 

displayed through colour-coded notifications. 

After each game, participants completed the 'Ranking 

Questionnaire' and the 'Subjective Probability Questionnaire.' 

These questionnaires assessed their degrees of disbelief and 

belief and subjective probability estimates regarding the 

opponents' likely room choices. Numerical values were 

assigned to reflect their belief levels or probabilities, offering 

insights into participants' internal models of opponent 

behaviour in this dynamic and structured game environment. 

 

Results and Discussion 
In an experiment of hide-and-seek game, the participants 

interacted with computer opponents who had different 

objective probability distributions as strategies. For every 

room, the participants gave their degrees of belief/disbelief 

and subjective probabilities responses.  

In Figure 4, we observed the relationship between two-

sided ranking functions and objective probability. We began 

by examining the extreme p-values, and introduced rooms 

with a p-value of 0 and 1 (i.e., [100-0-0] distribution). A p-

value of 0 represented maximum levels of disbelief (denoted 

by a -infinity value for impossibility), whereas a p-value of 1 

represented maximum levels of belief (denoted by a +infinity 

value for absolute certainty). The violin plot in Figure 4 



illustrates that the majority of participants' levels of disbelief 

and belief matched these extreme p-values. 

A two-sided rank of 0 suggests that participants 

demonstrated indifference in belief between the possibility of 

the opponent being in a specific room and not being in that 

room, based on the provided probabilities. This equilibrium 

in belief systems observed notably in the uniform [33.3, 33.3, 

33.3] distribution, indicates that no specific room was 

perceived as definitively more or less likely for the 

opponent's presence or absence. 

Additionally, our results demonstrated that the two-sided 

rank increased with the objective probability of the 

opponent's presence in a particular room, highlighting a 

positive correlation. This trend was particularly evident in 

distributions like [80-15-5] and [70-30-0], see Figure 4. 

To directly compare ranks and subjective probabilities 

with objective probabilities, we utilized a 2D probability 

simplex for visualization in the uniform distribution 

condition. This analysis revealed that ranks (115 responses) 

were in agreement with the objective probabilities than 

subjective probabilities (66 responses in agreement), as 

illustrated in Figure 5. The plotted points on the simplex, 

whose sizes were adjusted based on frequency, showed that 

ranks were much more accurate in representing the objective 

probabilities than subjective probabilities. 

This study reveals discrepancies in how participants 

process ranks and subjective probabilities, suggesting 

challenges in estimating probabilities accurately. This invites 

further research into the cognitive processes involved in 

decision-making and uncertainty management in various 

contexts.

 
Figure 4: Violin plot illustrating participants' degrees of 

disbelief and belief for each probability distribution, adjusted 

using the asinh transformation to scale values from -infinity 

(representing impossibility) to infinity (representing 

certainty). This plot compares the relationship between 

objective probabilities and the two-sided ranks, where 

negative values indicate disbelief and positive values indicate 

belief. The triangle within each violin plot represents the 

median, highlighting how participants' belief systems adapt 

to different probability distributions. 

Figure 5: A probability simplex (∆n−1) displays participants' 

subjective probabilities and disbelief rankings against a fixed 

objective probability (1/3, 1/3, 1/3) marked in red. Blue dots, 

representing subjective probabilities, are widely dispersed, 

illustrating varied response densities from multiple 

participants. Yellow dots, indicating negative ranks, cluster 

at the center, reflecting a more consistent evaluation of 

objective probability, with each room ranked similarly. 

Larger dots indicate more common responses, highlighting 

that rankings provide a clearer picture of the uncertainty 

structure compared to subjective probabilities.  

  
Experiment 5 

Ellsberg’s one-urn paradox is a classic problem in decision 

theory that shows how people violate the expected utility 

theory when faced with ambiguity, or incomplete information 

about the probability of different outcomes. In this study, we 

propose a novel approach to investigate how people assign 

degrees of belief under uncertainty, employing ranking 

theory as a framework. In the one-urn problem, we measure 

individuals’ degrees of disbelief prior to making their 

preferences among bets. We aim to answer the following 

research questions: (1) Do people exhibit inconsistent beliefs 

consistent with the Ellsberg paradox, or do our findings 

challenge the expected inconsistency when using ranks? (2) 

How does ranking theory explain the influence of ambiguity 

and belief on decision-making under uncertainty? (3) How 

does ranking theory resolve the apparent paradox that 

Ellsberg poses for expected utility theory? 

Participants 
We recruited 301 undergraduate students from the University 

of Waterloo for an online experiment in exchange for a 

course credit. We excluded 10 participants who failed 

attention checks. (median age: 19 years; 228 females; 53 

males; 1 other; 9 prefer not to answer). 

Procedure 
Participants were presented with an urn scenario involving 

90 balls in three colours: red (30 balls), black, and yellow, 

with the latter two colours totalling 60 but in undisclosed 



proportions. Participants gave their degrees of disbelief in 

drawing each colour or combination (i.e., red, black, red or 

yellow, black or yellow). They then faced two betting 

scenarios, repeated across four rounds to gauge confidence: 

betting $100 on drawing (red vs. black), (red or yellow vs. 

black or yellow), with no reward if another colour was 

drawn. The four rounds allowed expressions of neutrality by 

repeating choices. The study included a ‘rarity’ version with 

an urn of 1000 balls in four colours: 1 red, 2 black or yellow, 

and 997 green. Participants assigned degrees of disbelief to 

this rarity scenario. We maintain the red to black or yellow 

ratio while increasing rarity to elicit greater degrees of 

disbelief or surprise, and avoid possible ‘floor effect.’ An 

attentiveness check required participants to recall the number 

of balls and their colours; those failing were excluded from 

the analysis. 

Results 
Paradox: Analysis showed significant differences in 

susceptibility to the Ellsberg paradox. In the initial betting 

round, 48.8% of participants displayed this susceptibility 

(choosing “red ball” and “black or yellow”). Over four 

rounds, the rate dropped to 31.3% (participants who chose 

similarly at least three times). A chi-squared test indicated a 

significant decrease in susceptibility with multiple rounds, 

Χ$(1) = 17.89, p <.001, allowing participants to be neutral 

about their choice preferences. 

With negative ranking functions, only 8.6% displayed 

susceptibility, decreasing to 5.2% in the rarity scenario (i.e., 

being less surprised if a ‘red’ ball is drawn compared to a 

‘black’ ball, and less surprised if a ‘black or yellow’ ball is 

drawn compared to a ‘red or yellow’ ball). A chi-squared test 

confirmed a significant reduction when using negative 

rankings compared to betting choices across four rounds, 

Χ$(1) = 45.49, p <.001. No significant difference was 

found between one-urn and rarity-urn scenarios in negative 

rankings, Χ$(1) = 1.85, p =.174. 

Disbelief: A two-way ANOVA revealed no difference in 

disbelief scores across propositions, F(3, 1996) = .003, p = 

.999, but a significant effect of urn-scenario, F(1, 1996) = 

5.206, p <.05, with greater disbelief in the rarity scenario 

(Mdn = 97.5) compared to the standard scenario (Mdn = 4). 

Disbelief and betting choices: Pearson’s correlation 

revealed no significant link between betting choices and 

disbelief levels in both betting scenarios, thus not rejecting 

the null hypothesis of zero correlation: r(276)=0.07, p=.264, 

95% CI [−0.05,0.18]; r(277)=0.07, p=.181, 95% CI 

[−0.05,0.18]. 

 

Discussion 
The results of Experiment 5 indicate that expressing beliefs 

as ranking functions diminishes the impact of the Ellsberg 

paradox. Only 8.6% of participants exhibited susceptibility to 

the paradox when using negative ranking functions, 

compared to binary betting choices. This finding challenges 

Ellsberg's assertion that gambling choices reflect underlying 

beliefs, as no significant relationship was observed between 

participants' disbelief and their betting choices, indicating 

that choices do not reliably infer beliefs in this context. 

To maintain focus on the decision-making variables 

central to the Ellsberg paradox, subjective probability 

judgments were not directly measured. This is because 

subjective probabilities are the only variable that would 

influence choice behaviour in the Ellsberg paradox. This 

methodology is consistent with established practices in 

Ellsberg paradox studies (Oechssler & Roomets, 2015). 

Ambiguity aversion – the tendency to prefer bets with 

known probabilities over those with unknown probabilities, 

even when the expected values are the same (Ellsberg, 1961) 

– was less influential under ranking theory. This suggests that 

ranking theory provides a more objective measure under 

uncertainty, resistant to the comparative ignorance and 

competence hypotheses traditionally linked to ambiguity 

aversion (Fox & Tversky, 1995; Heath & Tversky, 1991). 

Despite simultaneous assessments of disbelief, participants 

showed no expected ambiguity aversion in betting, indicating 

that ranking theory allows a more objective evaluation of 

uncertainty, unaffected by comparative biases, which 

typically enhances ambiguity aversion (Fox & Tversky, 

1995; Chow & Sarin, 2001). 

Moreover, ranking theory might resolve the apparent 

contradiction posed by the Ellsberg paradox to expected 

utility theory, which assumes that rational decision-makers 

assign probabilities to outcomes and choose the option that 

maximizes expected utility (Schoemaker, 1982). Although 

the betting scenarios offered identical expected utilities, a 

significant portion of participants (31.3%) showed 

inconsistency in their subjective probabilities inferred from 

their choices. This inconsistency was not present in negative 

ranking responses, suggesting that ranking theory could offer 

a more resilient framework for capturing beliefs amid 

uncertainty and provide a more accurate reflection of 

decision-making processes when probabilities are 

ambiguous. 

Conclusion 
Our series of five experiments explored the application of 

ranking functions to the expression of belief and disbelief. 

Experiments 1 and 2 demonstrated that negative ranking 

functions effectively map disbelief, offering finer granularity 

than traditional subjective probabilities.  Experiment 3 

introduced positive ranks, affirming the utility of two-sided 

ranking functions for capturing a full spectrum of beliefs. 

Experiment 4 further validated this approach in a hide-and-

seek game scenario, where ranking functions more accurately 

reflected objective probabilities than subjective probabilities. 

Lastly, Experiment 5 addressed the Ellsberg paradox, 

showing a diminished impact of ambiguity aversion when 

beliefs were quantified using ranking functions, thus 

challenging conventional interpretations of decision-making 

under uncertainty. These findings emphasize the ability of 

ranking theory to capture complex belief dynamics and 

enhance our understanding of cognitive processes in 

decision-making contexts. 
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